

STILLWATER RANGE STRUCTURE

Stillwater Range = upthrown block

Dixie Valley Fault

Reservoir = downthrown block

1500 m

• TECTONIC STRUCTURE

FOUR SETS OF FAULTS

MESOZOIC TO PRESENT

SIMILAR SUBSURFACE STRUCTURE

- Borehole logs
- Surface relationships

CONSTRAINTS ON GEOMETRY OF THE DIXIE VALLEY FAULT

- Inactive splays exposed at the surface
- Shallow basement block from seismic model
 - Measured surface dip
 - Dip in boreholes

SUMMARY

- Tectonic Stratigraphy is Similar in Footwall and Hanging wall. This is nothing new.
- Shape of the master rangefront is most likely rampflat. This is based on structural observations.

 Fault sets in the Rangefront appear to be present in the subsurface

CONCLUSIONS

- Fault geometry may influence fracture orientation, and therefore may influence which fractures are open.
 - The question of fault geometry is important to future studies
- Dave Blackwell is somewhat suspicious of seismic images